Ackermann Steering For Catamarans
Tom Speer
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Symbol

b beam

L lift from hull & keel

Lp lift from port rudder

Ls lift from starboard rudder
I distance from c.g. to rudder
N yawing moment

R turn radius

Vp boat speed

o angle of attack of rudder
) rudder deflection

Sp port rudder

dg starboard rudder

A leeway angle

Q turn rate

Assumptions
Boat is turning at constant speed under power

Thrust = drag (approximately) so both can be neglected

Aerodynamic forces are ignored

Hull and rudders are not stalled, so hydrodynamic forces are operating in the linear range
Obijective is to turn as tightly as possible
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Turning Cat Geometry Figure a:

Boat is traveling at speed V,,, turning with radius R and turn rate Q. It is making leeway () as it
crabs into the turn. The lift on the keel and hull, L, acts at right angles to the velocity (by
definition), and this lift supplies the centripetal acceleration necessary to make the boat turn.
The starboard and port rudders are deflected through the angles &g and p. The rudders are
located a distance | aft of the boat's center of gravity, and because this is a catamaran, the
distance between them is the centerline beam, b.

The speed, turn radius, and turn rate are related by

\Y A\
1, R=_" ="
Vp=R-Q Q R

The hydrodynamic lift from the hull is related to the speed by
=c. ! 2
2. L=C L-E-p VS

where C, is the lift coefficient of the hull, p is the water density and S is the reference lateral
area of the hull. The lift coefficient, C,, is assumed to be a linear function of the leeway angle,
Al

The lift curve slope, C,,, is a characteristic of the hull and keel/board. Assuming the boat
is turning as hard as it can,

4. Cpmax=C L?{k max

5.

1 2 1 2

L=C T) A max —P v h -S= /C T2 A max —P S\ v h

Amax 1S just short of the hull stalling, so this is another fixed characteristic of the boat, as is
everything else in the parentheses.

The rudders produce lift forces of their own, and there is also a yawing moment, N, due to rudder
forces, leeway, and turn rate which must be balanced. More on this later.

Linked Rudders Figure b:

The tillers of the two rudders are offset from the rudder centerline by the Ackermann angle, v,
so the link between them, whose length is d, is shorter than the beam. The length of the tillers
is r;. These quantities are related by:

6. d=b-2.rsin(y)

d reo 8p:=0,10..70
7. —=1-2-—.sin(y)
b b

Since the rudders are linked together, once one rudder deflection is known, the other rudder can be
determined as well. The beam of the boat, the two tillers and the link form a four-bar linkage - a
very common mechanical arrangement. Let the coordinate system be positive X forward and
positive Y to starboard. The locations of the ends of the tillers are

8. XP=rt-cos<8P+y>—1 9. YP=rt'5in<8P+Y>_g



10. Xs=rt-cos<85—y>—l 11. YS=rt-sin<SS—y>+;

And the link ensures that the distance between the ends of the tillers remains a constant:
12. d2=<XS— XP>2+ <YP— Ys>2

Substituting for the coordinates of the tillers gives the desired relationship of one rudder to
the other and the basic constraint on the tiller motion:

13. <b— 2-rt-sin(y)>2=<rt~cos<8 S— y> - rt-cos<8 pt y>>2+ <rt-sin<8 S— y> +b- rt~sin<8 pt y>>2

" O=[_2,<COS<5 5= 7)cos(8 p7) + 1 +5in(8 5= y) sin[3 p+y) - 2~coS(Y)2>] %

+-2:(-sin(8 g = y) + sin[8 p+v) - 2:sin(p)|

Once one rudder position is known, the other can be determined. For example, solving for the
starboard rudder as a function of the port rudder position yields the following expression:

2-cos(y) +- 2-%- - sin<8 P> + 2~cos(y)2-sin<8 P>
+ 2-sin(y) -cos <8 P> -cos(y)

+-2- [ <4.Sin(y)2-cos<8 P> - sin(y)z-cos<8 P>2> + cos(y)2
+-3 -sin(y)z— 2-sin<8 P> -cos(y) -cos<8 P> -sin(y) ...
+- sin<8 P>2-cos(y)2 + 4-cos(y) -sin<8 P> -sin(y)

- r
+ —4-cos<8 P> -sin(7y) — 8-sin(y) -cos(y)2 ?t

+ 4~cos(y)2-sin(y) ~cos<8 P> + 4-sin(y) ...
+—4-sin(y)2-cos(y) -sin<8 P>

[ 2 4 2 1%t
+ sm<8 P> +4-cos(y) ~cos<8 P> (—)
+4-cos(y)2-sin<8 P>2-sin(y)2
+—4-sin<8 P>2-cos(y)2
+ 4~cos(y)2 + 4~sin(y)2-cos<8 P>2-cos(y)2
+-1- 4-cos(y)4— 4-cos<8 P>2-cos(y)2
J + cos<8 P>2+ 4-cos(y)4-sin<8 P>2
2-<- 3sin(y) + sin<8 P> -cos(y) + cos<8 P> -sin(y)>

15. 83f<8 P,y,rt,b> :=2.atan| &

+2-%~ <1 + cos<8 P>> - 2-cos(y)2

+2-cos(y) ~sin<8 P> -sin(y) — 2 -cos(y)2~cos <8 P>




This function is plotted below for the same dimensions Martin Schoon used and Ackermann angles
ranging from 0 to 50 degrees. As expected, the starboard rudder always deflects less than the port
rudder when turning to port.

From Figure d, it's evident that there's a maximum deflection for the following rudder, and this is seen
in the peaks of the curves. Where the curves bend back down, the linkage has become inverted.
The longer the tillers compared to the beam, and the larger the Ackermann angle, the easier it is for
the linkage to reach this limiting condition.
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Local Flow at Rudder Figure c.
Each rudder sees a different flow due to the motion of the boat. The inside rudder will be

traveling slower than the outside rudder. This contribution is ig-Q, with the sign depending on

which rudder it is. Both rudders are being swept sideways by the turning of the boat, and this
adds a velocity component 1-Q. The change in angle of attack due to this latter component
always acts to oppose the turning of the boat. This is the yaw damping provided by the rudders.

The local angles of attack for the rudder are:

. S
[V sin(d) +1Q | Vpsin(a) 41—
16. o p=0 p— atan =4 p— atan
b v
VbCOS()\‘)—EQ VbCOS(k)_E_b
_ | v -
[V sin(d) +1:Q | Vpsin(a) 41—
17. o g=0 g — atan =5 g — atan
b v
VbCOS()h)"‘EQ VbCOS(k)_'_E_b
) : 2 R

The Ackermann angle is to be designed so that the angles of attack on both rudders are the

same. This ensures that they can both be operated on the edge of stall (o, )-

Vi vy,

Vsin(d) +1— Vsin(d) +1—

R R

18. 8 g— atan =4 p— atan

b Vb b Vb
Vb-cos(k)-|—_-_ Vb-cos(k)——-—

2 R 2 R

19. 5 =5 p— atan| -2 MM RED ]+atan[2- (sin(A)-R+ 1) ]
(_Z'COS(X)~R+b) (2.005(7\‘)_R+b)

This is actually very close to the result obtained by Martin Schoon' s geometric analysis, but with
the center of the turning circle shifted forward due to the leeway angle of the boat, and projected
onto the boat' s centerline. This effectively lengthens the longitudinal distance to the rudders.

Since both rudders are to have the same angle of attack, the port rudder deflection can be
determined from equation 17 and substituted into equation 19:

(sin(A)-R+1)
(2-cos(L)-R+Db)

20. dg=ap+ atanlz-




The following graphs show these relationships visually:
(sin( )R+ 1) Ry :=1,15.10
(2-cos(A)-R+D)

,y,rt,b]

) sz((l P,?\.,R,l,b) =0 P-|— ataan-

(sin(A)-R+1)
(-2-cos(A)-R+Db)

) Sf3<0‘ P,k,R,l,y,rt,b> =d i

opt atanl— 2.

b f:=7.92-m Iepi= 1.89-m lf:=6.25-m

Port rudder deflection for various port rudder angles of

attack
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Starboard rudder deflection

15 degrees Ackermann angle
oL leeway 40% of rudder angle of

Vei=lS—r attack

180 C .
Thin lines = ideal angle
Heavy lines = Ackermann linked
60 T T T T
8 Sf2< 16-_ Rbbf,lf,bf> 180 50 —
T 180
3 g |8 — 32_ Rpbplgb
sz< T80’ bbflf f>
180 -
3 s 12_48_Rbbf,1f,bf 40
180 n
180
8 |16, 64_R b lgb
sz< T80 bbrlf f> -
T 180 30—
sz3<4 16— Rbbf,lf'yf,r[f,bf>
180
Y
3 g3 (8 — 32_R b el fY el b
Sf3< s b0 £ 1Y £0 1 f>
20—
55f3<12_48_Rbbf,lf,yf,rtf,bf>£
180 T
8 gp3( 16— 64— Ryb pl o pr b | o
180 1o
0 | | | |
0 2 4 6 8

10
Ry
Turning Radius/Beam, R/b
alpha = 4 deg, ideal
alpha = 8 deg, ideal
alpha = 12 deg,ideal
alpha = 16 deg, ideal
Port 4 alpha, Stbd Ack.
Port 8 alpha, Stbd Ack.
Port 12 deg, Stbd Ack
Port 16 deg, Stbd Ack.



180

S|4 6‘—Rbbfvlfvbf>

80
3 ) 8._ 32._ Rypbyglsb
§ < 180 bof 1 f> T

180
12._ 48_ Rypbgleb
130 bOfilf f> 11',

o
2
3

o
%
3

180
16_ 64_R beleb
< 130 bOflf f> m

v
3

b 80
4 16_R byl LT tf, b f] ——
< 130 bO £l £7 £ T tf f>

180

Starboard Rudder Deﬂectlon deg
o

) Sf3<8’_ 32-_ Rpbelyg, ’Yf,rtf,b f>

8 g3 12 48_ Rpb gl py prfb f>&
180 n

8Sf3<16 64_ Rbbf,lf,yf,rtf,bf>

60

50

30

20

10

Starboard rudder deflection

30 degrees Ackermann angle
leeway 40% of rudder angle of
attack

Thin lines = ideal angle

Heavy lines = Ackermann linked

(=)
)
IS
=)
o0

10
Ry
Turning Radius/Beam, R/b
— alpha =4 deg, ideal
— alpha = 8 deg, ideal
— alpha =12 deg,ideal
— alpha = 16 deg, ideal
=== Port 4 alpha, Stbd Ack.
=== Port 8 alpha, Stbd Ack.
== Port 12 deg, Stbd Ack
==<==Port 16 deg, Stbd Ack.



Starboard Rudder Deﬂection deg
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Add Newton

So far, this analysis has shown how much the rudder deflection differs from port and starboard for
different amounts of Ackermann angle and boat geometry. It' s also shown how much difference is
needed based on the turning radius and the leeway angle made by the hull. However, one can get
any amount of rudder deflection required depending on what one assumes for the turn radius. So
the next step is determine the turning radius.

The centripetal acceleration of the boat is

Vv 2
21. a=R-Q’=V Q=" g:=9.81. 2
R 2

And Newton' s law says that the sum of forces acting on the boat is equal to its mass times the
acceleration (m is the mass, W the boat' s displacement, and g is the gravitational constant):

22. L- LP— L S=a-m=a-y

The lift on the hull and keel comes from equation 5. The lift on the rudders is similar, but needs to
account for the local speed and the fact that the local flow angles are not the same as the
freestream. The local angles of attack for both rudders will be the same, by design. (S, is the
rudder area)

2
24. Lp=C Lo P%-p- Vb2+(1-Q)2— <;Q> -Sr-coslatanlz-

(sin(A)-R+1) Y
(2-cos(A)-R-Db)

2 .
BQ) -Sr-coslatanlz- (sin(A)-R+1) ]—k]

1 2
26. Lg=Cpgagop: Vi i+ () +

2 (2-cos(L) R +b)
- Ak V2] OO R 1
26. Lp=Cy o P'l'P' Vb2+ o) _[b_b S -cos| atan 2.—(s1n( )R+D Y
21 R R/ | (2-cos(A) R—b)
- Ak V2] OO R 1
27. Lg=Cypq S'l'P' Vb2+ 1> + b_b S -cos| atan 2.—(s1n( )R+D -2
21 R ] (2-cos(A) R+ b)
[ 1T T T, GinnR+D ] ]
28. Lp=Cp ,a P'l'P'Vbz"Sr- 1+L-l2— ! b2 |-cos| atan| 2. (sin(A) R +1) Y
2 R2 <4R2> i (2'COS(7L)'R—b)_ |
[ 1T T T, GinnR+D ] ]
29. Lg=C Lo @ S'l'P‘VbZ'S r 1+L~12+ ! b?|-cos| atan] 2- (sin(M)-R+1) -
2 I R2 <4R2> i (ZCOS(k)Rﬁ—b)_ |
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Putting all this together yields:

30.
2
\"

1 2 _'b W
CLa—pVy'S.. =2
+-Crgo P'l'P'Vbz'Sr' 1+L-12— ! 52| -cod atan| 2. (sinM) R+1) A ..

2 R2 <4-R2> (2-cos(A)-R=Db)
1 b2

8

<- speed difference -><---- difference in flow angles ---->

1 2 I 2
La™ S5+ "b r[ (2-cos(A) R + b)

[ [ (sin(L) R +1)
-cos| atan| 2 -
R? <4-R2>

- A

1 1 1 sin kmax R+1
+-C Lo © -E~p-S r l1+_-12— b2 |-cos| atan| 2- < < > > max | -+

R? <4 -R2> <2 -cos<k max> R- b>
<sin<k max> R+ l>

(2:008(A pax) R+ B

max

b2 |-cos| atan| 2.
R2  (4R?

Interestingly, the velocity cancels out and the minimum turning radius can be calculated based on
the boat' s geometry and the stall angles for both the hull & keel and the rudders. There is only
one speed at which the yawing moments will be balanced, however. But itisn' t necessary to
know this to work out the Ackermann geometry.

As a first approximation to getting the turning radius, the fact that the lift on the rudders is not
parallel to the lift on the hull can be neglected, and only the fact that the inside and outside
rudders travel at different speeds is retained. With this simplification, equation 22 becomes:

32. Cyph max—PS =0
1 1 » 1 2
+-C Lg% may5 P S || 1+ =1 = ——b
2 R (4.R?)
e 2y g2
R2  (4R?
1w
+-—
R g
2 2 2 2
[W+JW #2050 gy C Lo S 12 (SA max C L= 2°C Lo ® maxS r)]
32. Rmin=

[p -[g-(S-k maxC LA~ 2°C Lo ® maxS r>]]
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Substituting some typical numbers to see what all this means:

- — — - — -3 -
W ¢:=3700-kgf bi=792m r:=1.89m 1£:=625-m p ;:=1000-kg-m A hax =2,2.5..16

Clgi=007deg”’  Cyy:=007-deg”’  §,:=0495m°  S;:=2.97m°

Wf+ sz
+2: fz'Oc maxC LoP fz's r-g2~<S A maxC LA™ 2C Lo® max"S r>
[p f-[g-<S fA max € LA~ 2C Loy ® max'S r>]]

Minimum turning radius in multiples of boat beam

R minf<Oc max> M max> T

4 | T | | | |

Turning radius divided by beam, Rmin/b

Maximum leeway angle, degrees

= 4 deg alpha rudder
c*++ 8deg

12 deg
= = 16deg

The minimum turning radius goes down with increasing rudder angle of attack (deflection)
because the force on the rudders is opposing the force on the keel. But some rudder is required
to make the boat turn. This requires looking at the balance of the yawing moments. A boat with
a lot of resistance to turning needs more angle of attack on the rudders and this saps its turning
ability much like lee helm hurts windward ability.

But it appears that for the geometry assumptions made so far, for maximum leeway and rudder
angles of attack on the order of 8 - 10 degrees the minimum turning radius would be on the order
of one to two beam-widths and the most suitable Ackermann angle would be fairly small - on the
order of 10 degrees to 15 degrees, depending on the maximum angle of attack. Too much
Ackermann and the starboard rudder reverses at the high rudder deflections needed for tight
turns.
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